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Science Questions Driving development of our Simulator
• How do polarimetric radar signatures contrast in convective cores between 

land and ocean? 
• E.g. MC3E vs. TWP-ICE
• What are the uncertainties of the radar retrievals?

• How well can sophisticated microphysics represent the land-ocean contrast 
of polarimetric signals and retrievals?
• E.g. Bulk vs. Bin microphysical schemes

• What are the relative roles of thermodynamics and aerosols in convective 
invigoration, for land and ocean regions?

• How is DSD variability related to cloud microphysical processes?
• What is the impact of DSD assumptions on precipitation microphysics in 

CRMs?



POLARRIS:
POLArimetric Radar Retrieval and Instrument Simulator

• Framework to put the model data and radar observations into direct comparison
• POLARRIS-F

• Calculate the polarimetric radar moments from scattering calculations using model 
consistent microphysical assumptions + user assumptions + radar geometry

• iPOLARRIS
• Apply the same retrievals to models output as radar analysis

• HID, polarimetric rainfall estimation, dual-Doppler wind retrieval

Model microphysics Observations /
Retrieval Algorithms

Model evaluation

Retrieval evaluation

Uncertainty



CHARACTERIZATION OF UNCERTAINTIES

• Uncertainties in assumptions at the forward model level
• Particle axis ratios, canting angles

• Model microphysics scheme assumptions (e.g. 4ICE vs. SBM)
• Hydrometeor definitions
• Rime fraction /density
• PSD 

Ø Propagation to the simulated variables
Ø Propagation to retrievals (e.g. HID)

• Uncertainties in retrieval algorithms
• E.g. Hydormeteor Identification
• MBFs
• Fuzzy logic scoring (DOMINANT type)



• Different sets of scattering assumptions (axis ratio, canting angle 
distribution), none reproduce the observations

• Assuming a single axis ratio (for a given hydrometeor type) across all 
size significantly impacts the breadth of retrieved Kdp and Zdr values
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Liquid
(cloud & Rain)

Axis = 0.9951+0.0251*D-0.03644*D2 +0.005303*D3-0.0002492*D4

[Brandes et al. 2011]
Type: quasi-Gaussian (Θmean= 0°,  σ=1°)

Ice
(column)

Axis = 2.0
Type: random

Ice
(plate)

Axis = 0.35
Type: quasi-Gaussian (Θmean= 0°,  σ=10°)

Ice
(dendrite)

Axis = 0.125
Type: quasi-Gaussian (Θmean= 0°,  σ=10°)

Snow
aggregate

Axis = 0.8
Type: quasi-Gaussian

(Θmean= 0°,  σ=40°)

Axis = 0.75
Type: quasi-Gaussian

(Θmean= 0°,  σ=20°)

Axis = 0.592
Type: quasi-Gaussian
(Θmean= 10°,  σ=10°)

Graupel
Axis =max(0.8, 1.-0.2*D)

Type: quasi-Gaussian
(Θmean= 0°,  σ=40°)

Axis = 0.75
Type: quasi-Gaussian

(Θmean= 0°,  σ=10°)

Axis = 0.814
Type: quasi-Gaussian
(Θmean= 20°,  σ=10°)

Hail
Axis max(0.8, 1.-0.2*D)
Type: quasi-Gaussian

(Θmean= 0°,  σ=40°)

Axis = 0.75
Type: quasi-Gaussian

(Θmean= 0°,  σ=10°)

Axis = min(0.725, 0.897 -
0.0008D - 0.0002D2)
Type: quasi-Gaussian
(Θmean= 90°,  σ=10°)

4ICE

CHARACTERIZATION OF UNCERTAINTIES: FORWARD MODEL



4ICESBM

Kdp and Zdr have markedly different responses to microphysics scheme 

CHARACTERIZATION OF UNCERTAINTIES: MICROPHYSICAL SCHEME



• 4ICE much narrower distribution of ice 
• Small reflectivities

4ICE

SBM

CHARACTERIZATION OF UNCERTAINTIES: MICROPHYSICAL SCHEME

Aggregates



”Worst” Assumptions ”Best” AssumptionsObservations (CSAPR)
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CHARACTERIZATION OF UNCERTAINTIES: IMPACT ON RETRIEVALS

Assumptions can impact the amount of hail, graupel, and aggregates in the retrievals



• HID Membership Beta Functions
• How much does the resulting HID change based on MBF modification?
• Using C-band radar observations from a tropical location (CPOL Darwin) and 

mid-latitude location (CSAPR MC3E), all variables for all ten hydrometeor types 
were adjusted 

ORIGINAL MBFs MODIFIED MBFs
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CHARACTERIZATION OF UNCERTAINTIES: RETRIEVAL INPUT



OBSERVATIONS SBM
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Convective Stratiform

• Decrease AGG – turn into 
graupel

• Are these changes more or less 
than assuptions in forward 
model or microphysics scheme?

CHARACTERIZATION OF 
UNCERTAINTIES: RETRIEVAL 
INPUT



UNCERTAINTIES: CHALLENGING BUT CRITICAL

• A polarimetric radar simulator such as POLARRIS has many layers of complexity
• Although it is nearly impossible to quantify all sources of uncertainty, it is critical to

identify and understand them
• These come at several levels:

• Model microphysical parameterizations (assumed PSD, density, sizes, hydrometeor
classes)

• Forward model assumptions (canting angle, axis ratio, density, particle types)
• Applied Retrievals (e.g. hydrometeor identification, rainfall retrievals, wind retrieval)

• Does one dominate over the others? 
• Can we reduce any areas of uncertainty?

• More observations of particle DSDs, fall modes, shapes, densities, etc.
• How to quantify and represent in final ‘products’?


